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Abstract. The off-centre displacement 6 of a Li ion in KTa03 and the surrounding lattice 
distortion is calculated using a non-linear shell model developed for the pure lattice. The 
method of the static lattice Green function is applied and the range of the Li dipole forces is 
limited to a few lattice constants. A short-range Li-0 interaction potential is used which 
leads to a lithium displacement in reasonable agreement with estimations made from NMR 
measurements. A lattice polarisation is found to develop in a region around the Li, whose 
total dipole moment exceeds by a factor of 4.5 that arising from the Li displacement itself. 
This is in satisfactory agreement with the observed dielectric properties. The shape of the 
polarised region is strongly anisotropic, the longer axis being coincident with the (incipient 
ferroelectric) polar axis. 

1. Introduction 

Studies of ordering in crystals containing off-centre impurities have led to a new line of 
research after the discovery [ 11 in 1974 that Li is an off-centre ion when it substitutes for 
Kin the highly polarisable dielectric KTa03.  Potassium tantalate is a cubic paraelectric 
perovskite which shows a ferroelectric soft mode and becomes nearly unstable when 
approaching 0 K. The Li+ impurity replacing the K+ ion has, because of its smaller ionic 
radius, a position shifted along a (1 00) direction relative to the crystal lattice site [2,3]. 
The Li displacement has been estimated from NMR measurements of the quadrupole- 
coupling frequency [2,4] using a model of polarisable point charges at ideal sites [5]. A 
&value of 0.32a, where a is the lattice constant, has been obtained. Dielectric relaxation 
[6], pyroelectric [7] and ESR [8] measurementsindicate that the dipole moment associated 
with each Li impurity exceeds by about one order of magnitude the value corresponding 
to the above displacement. These results have been interpreted in terms of a ‘cluster’ of 
polarised lattice ions around the impurity. 

At low Li concentrations (i.e. below about 2%), when the clusters presumably do 
not interact, their polarisations are randomly oriented along the six equivalent Li 
displacements. Relaxational dynamics between the equivalent cluster configurations 
have been observed [2]. Below a concentration-dependent temperature Tg the dipoles 
freeze into a glass-like polar phase analogous to a magnetic spin glass [4,6]. 

At higher concentrations and low temperatures, whether the system undergoes a 
transition to a dipole glass or a ferroelectric phase is still under discussion [9, lo]. 

A theoretical description of the phenomena observed in Li,K1 -,TaO, can be 
attempted on the lines of the spin-glass theory. However, a complication does arise 
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for dipoles owing to the modification of their interaction by the lattice polarisation. 
Moreover, even a knowledge of the effective dipole magnitude is insufficient information 
since the interaction potential obviously depends on the shape of the polarised clusters. 

The lithium displacement has been previously calculated [5] minimising the potential 
energy in a model where all ions are represented as point-polarisable point charges and 
assumed to be fixed at their ideal positions except for a single Li+ ion, which is allowed 
to move along a (1 00) direction. A value of 6 in good agreement with that determined 
from NMR measurements has been found. However, the permanent dipole created by 
the off-centre Li ion is nearly completely screened by the induced dipole moments in 
the host lattice. 

The purpose of the present paper is to perform a more realistic calculation of the Li+ 
and surrounding crystal configuration in the framework of a model which allows ionic 
displacements as well as electronic polarisation. A non-linear shell model is applied 
which has given a satisfactory description of the lattice dynamics of KTa03 in a wide 
range of temperatures [ll]. The lattice distortion around an isolated Li' impurity is 
calculated self-consistently, together with 6, by the Green function method. 

2. Model and formulation of the calculus 

For the pure lattice we use a model which allows us to describe the lattice dynamics and 
ferroelectric behaviour in oxidic perovskites ([ 121 and references therein), In particular 
the model gives a very accurate description of the dynamical properties of KTa03 [ll]. 
It includes axially symmetric short-range forces which couple the shell of each oxygen 
ion to those of its nearest K+,  Ta5+ and 02- ions. Both the K+ and the Ta5+ ions are 
considered to be isotropically polarisable, each with a shell charge Y and a core-shell 
coupling constant K.  However, since the oxygen polarisability depends strongly on its 
crystal environment, two independent core-shell force constants are considered for this 
ion: KOB for core-shell displacements directed towards its neighbouring Ta5+ ions and 
KOA for those lying in the plane where the oxygen is surrounded by four K neighbours 
(figure 1). The model includes a fourth-order anisotropic interaction K 0 B - B  at the oxygen 
ion, for relative core-shell displacements along the direction of its neighbouring Ta5+ 
ion. This fourth-order interaction is treated for the pure crystal in the self-consistent 
phonon approximation (SPA), leading to an effective harmonic core-shell coupling 
KoB(T) [ l l ,  121. The bare harmonic model is unstable, and the crystal is only stabilised 
in the paraelectric phase through the anharmonic term of the potential. Therefore, in 
order to perturb a stable crystal with the defect, we shall consider the effective coupling 
to be the harmonic core-shell coupling at the oxygen. 

When a K+ ion of the pure KTa03 crystal is substituted by an off-centre Li' ion, 
the surrounding lattice (in the static approximation) distorts in order to minimise the 
potential energy. This can be decompowd as the sum of the pure crystal potential $ and 
a defect potential V = V, - VK. Clearly we understand by 'defect' the Li' ion at the off- 
centre position together with the vacant K+ ion. VLi includes short-range and Coulomb 
interactions between the Li+ ion and the host lattice cores and shells with the exclusion 
of the vacant K+ ion, while -VK cancels the same types of interaction arising from 
the K' ion eliminated from the centrosymmetric position. Except for the previously 
mentioned fourth-order interaction, the remaining short-range and Coulomb inter- 
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Figure 1. Oxygen and its neighbour ions in the 
perovskite structure. The ellipsoid at the oxygen 
site represents the symmetry of its polarisability. 
The core-shell couplings are isotropic in the case 
of K+ and Ta5' ions and anisotropic for the 02- 
ion. Also indicated are the short-range inter- 
actions between the oxygen shell and those of its 
neighbours. 

actions in the model considered are obtained using the harmonic approximation. The 
effective potential for the shell model is 

f &YkYk'uj(lk)[vj(l'k') - uj(fk)]  

+ XkYk'[uj(lk)uj(l'k') - iuj(lk)uj(Ek) - &uj(f'k')uj(l 'k')]}  (1) 
where U and U are the displacements of cores and shells, respectively, from their mean 
positions in the pure crystal. i denotes Cartesian components; 1 and k identify unit cells 
and atomic positions within the cell, respectively. Oi denotes an oxygen whose Ta 
neighbours lie along the i direction. 4' is the short-range force constant matrix between 
shells, Kki are the core-shell coupling constants and 

$5  ( l k ,  l 'k')  = [ a r-l/( drj arj)] I r ( / k )  - ? ( / , k ' )  

Xk and Yk are the core and shell charges, respectively. We shall use Zk later for the total 
ionic charge. 

The equilibrium conditions for cores is 

fi"(Zk) = -av(U, u)/aui(lk) = a@/aui(lk) 

f7(lk) = -8V(u, u) /au i ( lk )  = a@/aui(lk).  

( 2 )  

(3) 

and for shells 

For the following treatment it is convenient to write the above equations in terms of 
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the relative shell-core displacements w = U - U. The right-hand sides of equations (2) 
and (3) are linear in U and w except for the term in equation (3) arising from the fourth- 
order core-shell interaction at oxygen. This term is considered together with the forces 
f"(lk).  From the remaining linear terms in equation (3) we solve for the shell variable w .  
This is then replaced in the sum of equations (2) and (3). Finally, the resulting equation 
is solved for U, leading to 

U = gf' - af' 

w = bf' - CU. 

(4) 

( 5 )  

The above-described procedure involves force constant matrix inversions which are 
performed via their Fourier expressions in reciprocal space. In equations (4) and ( 5 ) ,  
f' = f +y contains the total forces exerted by the defect on the lattice ions, and 

g is obtained from the dynamical matrix D of the shell model as follows: 

1 
g, ( lk ,  l'k') = -E G,(kk' ,  q)  exp{iq - [r(lk) - r( l 'k')]}  (7) 

N ,  

where G(q) = D-l(q) with 

D = (S + C'') - (S + CYx)T(S + K + CYY)-l(S + Cy'). (8) 

Here S is the transform of 4' and C'', CY' and CYY are the Coulomb force constant 
matrices in reciprocal space. K is a diagonal matrix containing the core-shell coupling 
constants. Analogously to g in equation (7),  the matrices a, b and c are obtained from 
the matrices in reciprocal space: 

A = G(S + CyZ)TB 

B = (S + K + CYY)-' 

C = B(S + CY'). 

(9) 

(10) 

(11) 

In the limit case where the shells are rigidly displaced with the cores, i.e. K+ w, the 
matrix B, and consequently A and C, vanish and thus U = g f'. In this case we see that g 
is the static lattice Green function for the rigid-ion model. 

As is well known, the numerical evaluation of g from equation (7) depends on the 
number Nof q-points considered in the Brillouin zone. However, it has been shown for 
an HCP lattice [13] that g behaves linearly with l /Nfor sufficiently large N ,  which allows 
us to extrapolate g for infinite N .  In the present case, we have found the same linear 
behaviour. The matrices b and c are independent of N ,  and the matrix a depends non- 
linearly but weakly on 1/N. We have also compared our procedure for the calculation 
of the Green function with the approach based on the Gilat-Raubenheimer integration 
method [14]. We found that the latter needs a longer computer time. 

The forcesf' and f '  in equations (4) and ( 5 )  will be evaluated for the core and shell 
positions in the distorted lattice; hence they are functions of U, w and S. Therefore 
these are non-linear equations and must be solved self-consistently together with the 
equilibrium condition for the Lit impurity. 
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Since we are mainly interested in the lattice response for the Lit ion displaced along 
the (00 1) direction, as was experimentally observed, we shall restrict the displacement 
6 to this axis. With this restriction the lithium equilibrium condition is 

Here f ,“i(Zk) are the z components of the short-range and Coulomb forces exerted on 
the Li by the ion lk. 

Li+ is considered as a rigid ion with the same total ionic charge assigned to K+ in the 
model [ 111. The Li short-range forces are taken only on nearest-neighbour oxygen shells, 
as is also the case for K+ in the host lattice model. Since Li-0 potentials of the Born- 
Mayer type have been previously determined [ 15,161, we choose these potentials instead 
of that used in the aforementioned calculation of the Li displacement [5], which was 
taken from alkali halide data. The parameters of the potential 

are A = 1822 eV and p = 0.2204 A, as derived from a study of lattice dynamics in LiKS04 
[15]. From a study of defect energies of Li+ as substitutes of Ba2+ in BaTiO, a set of- 
parameters A = 292.3 eV and p = 0.3472 A was obtained [16]. We observe a large 
difference between both sets of parameters. Since the structure of oxygen ions around 
Li in LiKS04 is quite different from that in KTa03:Li and on the other hand Lif 
substitutes for Ba2+ in BaTiO,, thus generating a more complex defect, we do not have 
a priori an argument to choose one of these potentials. Therefore we shall select in 
section 3 the potential which gives a Li displacement in better agreement with the 
semiempirical value already determined [5].  The short-range K-0 interaction included 
in the V ,  term of the defect potential is chosen to be of the Born-Mayer type, with the 
parameters determined from the axially symmetric K-0 force constants in the shell 
model. 

In order to perform the calculation, the Coulomb forces due to the Li’ ion and the 
cancellation of the K+ ion must be restricted to a finite region around the defect. As 
considered later, for a reasonable selection of values of the cut-off radius the calculations 
are not significantly affected by this approximation, since the resulting long-range forces 
of the defect are of a dipole nature and decay very nearly as l/r3 within a few lattice 
constants. We wish to point out that the only cut-off imposed on Coulomb interactions 
is the above-mentioned one, since the long-range interaction between host lattice ions 
is fully taken into account in the harmonic approximation via the Green functions. 

As a result of the cut-off taken for the long-range defect forces, equations (4), ( 5 )  
and (12) need to be solved only for U and w corresponding to ions within a spherical 
cluster of the cut-off radius. Note, however, that the influence of the infinite lattice 
outside the cluster on the displacements inside the cluster is taken into account via the 
Green functions. The solution for U, w and 6 is approached by a double iterative 
procedure, where the perfect lattice positions (U = w = 0) and an arbitrary 6 # 0 are 
chosen as initial values. For each value of 6, U and w are determined iteratively from 
equations (4) and ( 5 ) .  This procedure is expected to converge, since U and won the left- 
hand sides of equations (4) and ( 5 )  arise as the linear response of the system in the 
configuration adopted in each iteration. Once U and w are thus obtained, a new value of 
6 is determined from equation (12). The whole iteration is stopped when 6 approaches 
a constant value. 
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Figure 2. Ionic core displacements of lithium and 
the tantalum and oxygen neighbours. The Li dis- 
pl-acement is in scale with the lattice constant a, 
and the others are on a ten times greater scale, 
The values are indicated in units of 10-'a. 

The relaxation volume for the defect will be calculated from the elastic quadrupole 
tensor Pap through the relation 

AV = (Tr P)/3K (14) 

Pup = [ra( lk)  + u, ( lk ) ]Ff ( r  + U) (15) 

where K is the bulk modulus. The quadrupole tensor is obtained as [17] 

lk 

where Flk is 

F'k = (f f - CT f '1. 
This force results from equation (4) written in the form U = g F .  The second term in 
equation (16) is the force due to the shell displacements produced by the defect. 

3. Results and discussion 

A radius R, of the spherical cluster has to be determined in order that cluster size effects 
do not affect significantly the results. For this purpose, several R,-values have been 
tested. For R, S 2Su, the lattice distortion is strongly size dependent. On the other 
hand, for R, = 2 . 8 ~  and 3.1~7, very similar results are obtained. Therefore we shall 
describe the results corresponding to the latter radius, which includes 122 Kf ions, 136 
Ta5+ ions and 408 0'- ions. 

As expected, the iteration procedure converges fairly well for both Li-0 potentials 
used. In the case of the potential taken from BaTi03:Li the equilibrium postion of Li in 
KTa0,:Li is centrosymmetric. On the other hand, with the other potential the Li 
displacement converges to the equilibrium value 6 = 0.36a, which is in satisfactory 
agreement with the semiempirical value [5] .  Therefore we shall discuss the results 
obtained with the latter potential. 

In the following discussion we shall distinguish between three contributions to the 
electric dipole moment of the system. First, there is the defect dipole moment produced 
by the off-centre substitution of Li for K. In addition the host crystal ions give rise to an 
ionic and an electronic contribution: the first contribution Zku(lk) corresponds to the 
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4 A 

b t  

Figure 3. The z component of the total dipole 
moments of ions along chains parallel to z axis, 
whose projections are shown in the inset. The 
abscissa values are the z coordinates in units of a,  

* ...._.. ;* 

- 2  0 2 measured from the Li plane. 
I [units of a1 

core displacements from their equilibrium positions in the pure crystal, and the second 
contribution Y,w(lk) is due to the relative shell-core displacement. The displacements 
of Li neighbour ions are depicted in figure 2. It is clearly seen that the ions are displaced 
in such a way that each reinforces the defect dipole moment in the z direction. In addition, 
the electronic polarisation of the Ta and 0, ions makes an important contribution to 
the z component of the dipole moment. These findings indicate that the total dipole 
moment in a region around Li is larger than the defect dipole moment. We shall call this 
polarised region the ‘effective dipole’. From the numerical results it is immediately 
apparent that this region is strongly anisotropic, with its major axis along 2. Therefore 
it is convenient to consider the orientation of dipole moments (ionic plus electronic) in 
ionic chains parallel to the z axis. Moving away from Li perpendicular to the z direction 
it is found that the only chains which reinforce the defect dipole moment are those whose 
positions are indicated in the inset of figure 3. The z components of the total dipole 
moments of ions along these chains are represented in figure 3. All ions in more distant 
chains screen the defect dipole moment, except for the negligible contributions of 
K+ ions. 

To determine the extension of the ‘effective dipole’ in the z direction, we move along 
the z direction in both senses from the Li position with a lattice constant step in order to 
avoid uneven contributions from isolated ions. The ‘effective dipole’ is considered to 
end when a given step contributes a screening polarisation. In this way we find the 
‘effective dipole’ schematically represented in figure 4. This extends two unit cells above 
the Li plane and three unit cells below it. However, this extension may be underestimated 
because the cluster radius is only 3. la .  We observed a weak tendency of the polarised 
region to grow in the longer dimension when increasing R, from 2.8a to 3.la.  The total 
dipole moment, including the defect dipole, exceeds about five times the defect dipole 
moment; more precisely Peff  = 4.5PLi. The Li dipole and the four nearest chains Ta-0, 
bear 99% of the ‘effective dipole’ polarisation. 

Regarding the electronic part of the polarisation, it is observed that all potassium 
shells, and the shells of Ta and 0, ions outside the Ta-0, chains nearest to the defect, 
polarise following the defect dipole field. For the ions on the four nearest Ta-0, chains 
the electronic polarisation is significantly larger than for the rest of the ions and reinforce 



4348 M G Stachiotti and R L Migoni 

I 

I 
I 

Figure 4. Schematic representation (on an arbi- 
trary scale) of the ionic dipole moments in the 
effective dipole created around the off-centre 

&/---- 
\ '  

\ 1  lithium. 6 
'& 

the defect dipole moment. This reinforcing effect is observed also in the ionicpolarisation 
of Ta ions on those chains, while the ionic contribution of the 0, ions in general 
screens the defect dipole. The incipient crystal instability of KTa03 with respect to the 
ferroelectric mode appears to be reflected in the pattern of lattice dipoles, in particular 
below the Li position (see figure 4). We notice the remarkable fact that the Ta-0, chain 
neighbours to Li polarise against the defect dipole field. First, a trivial calculation shows 
that the Coulomb forces exerted by the defect on the nearest Ta and 0 ions are very 
different from those that would result if the defect were considered as a point dipole. 
Moreover, the core and shell displacements for these ions do not point in the directions 
of the Coulomb forces. In fact the defect forces act together with those due to the host 
ion displacements. As a result of this non-trivial force balance, the defect neighbour 
ions (shown in figure 2) polarise to reinforce the defect dipole. On the other hand the 
Lorentz factors for the coupling of ions along a Ta-0, chain are much larger than for 
the other pair of ions. As a consequence, ions along these chains tend to polarise in the 
same sense, with a longer correlation than in the other directions. Thus the anisotropic 
shape of the 'effective dipole' has the same origin as the correlation volume [HI. An 
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analogous anisotropic shape was obtained in the previous calculation [ 5 ] ,  but contrary 
to the present results the induced dipoles screened the defect dipole completely. Thus, 
they do not form an ‘effective dipole’. This discrepancy may be assigned to the fact that 
in our shell model the ionic and electronic polarisation is due not only to Coulomb forces, 
as in the previous work [5], but also to short-range forces between shells, which correlate 
neighbour ion displacements. 

The Li displacement 6 can also be estimated in our model framework from the 
quadrupole coupling frequency v Q  determined by NMR techniques. v Q  is related to the 
electric field gradient V,, at the Li position as explained in [5]. We calculate V,, for 
different values of 6 by adding directly the contribution of ions in their relaxed lattice 
positions in the sphere of radius 3 . la  and taking into account also ions in their perfect 
lattice positions up to a radius of loa. The Li displacement which corresponds to the 
measured vQ = 70 k 3 kHz is 6 = 0 . 3 0 ~ .  This value is in reasonable agreement with the 
displacement obtained from the potential energy minimum of the shell model, although 
the discrepancy is larger than in the calculation with the polarisable point charge 
model [5] .  

In contrast to the large extension of the electric displacement induced by the impurity, 
ultrasonic attenuation measurements allowed us to determine a volume per impurity of 
0 . 0 0 2 6 ~ ~  [19], which characterises a small spatial range of mismatch at the impurity site. 
Calculating the components of the elastic quadrupole tensor according to equation (15), 
we obtain the values Pxx = Pyy = -2.08 eV and P,, = -2.38 eV and the remaining 
components are zero. With the bulk modulus corresponding to the model elastic con- 
stants [ l l ] ,  K = 1.34 X eV ~ m - ~ ,  the relaxation volume results from equation (14): 
AV = -0 .0025~~.  This indicates that an average inward relaxation of the lattice occurs. 
This is in excellent agreement with the value obtained in [19], taking into account the 
fact that those measurements did not allow determination of the sign of AV. 

For the effective harmonic core-shell coupling constant KoB(T) at the oxygen atom, 
we have taken the room-temperature value 357.5e2/a3 [ l l ] .  However, by testing values 
of KoB( T )  which fit the ferroelectric soft mode of pure KTa03 at several temperatures, 
no significant changes in the results are observed. Moreover the calculated distortions 
are almost not affected by the suppression of the w3 term in equation (6). This means 
that the appearance of an ‘effective dipole’ is essentially a property of the harmonic 
crystal. On the other hand, precise assessment of temperature effects on the distortions 
deserves a more careful treatment of the anharmonic properties in the defect crystal. 

Summarising, with a model which has been proved to be capable of describing several 
dynamical properties of pure KTaO,, and with a Li-0 interaction potential which leads 
to a Li displacement compatible with experimental observations, we obtain a polarised 
region reinforcing the Li dipole moment. This is in agreement with the experimental 
fact that the off-centre Li ion cannot be solely responsible for the observed polarisation 
effects [6-8]. 
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